Temperature distribution and thermal anomalies along a flowline of the Greenland ice sheet
نویسندگان
چکیده
Englacial and basal temperature data for the Greenland ice sheet (GrIS) are sparse and mostly limited to deep interior sites and ice streams, providing an incomplete representation of the thermal state of ice within the ablation zone. Here we present 11 temperature profiles at five sites along a 34 km east–west transect of West Greenland. These profiles depict ice temperatures along a flowline and local temperature variations between closely spaced boreholes. A temperate basal layer is present in all profiles, increasing in thickness in the flow direction, where it expands from �3% of ice height furthest inland to 100% at the margin. Temperate thickness growth is inconsistent with modeled heat contributions from strain heating, heat conduction, and vertical extension of the temperate layer. We suggest that basal crevassing, facilitated by water pressures at or near ice overburden pressure, is responsible for the large temperate ice thicknesses observed. High-temperature kinks at 51–85m depth are likely remnants from the thermal influence of partially water-filled crevasses up ice sheet. Steep horizontal temperature gradients between closely grouped boreholes suggest the recent thermal influence of a moulin. These profiles demonstrate the ability of meltwater to rapidly alter ice temperatures at all depths within the ablation zone.
منابع مشابه
Sensitivity of Greenland ice sheet projections to model formulations
Physically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regi...
متن کاملThe annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model
We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt...
متن کاملMIS-11 duration key to disappearance of the Greenland ice sheet
Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice shee...
متن کاملGRANTISM: An ExcelTM model for Greenland and Antarctic ice-sheet response to climate changes
Over the last decades, the response of large ice sheets on Earth, such as the Greenland and Antarctic ice sheets, to changes in climate has been successfully simulated with large-scale numerical ice-sheet models. Since these models are highly sophisticated, they are only applicable on the scientific level as they demand a large amount of CPU time. Based on similar physics, a computationally fas...
متن کاملConsidering thermal‐viscous collapse of the Greenland ice sheet
We explore potential changes in Greenland ice sheet form and flow associated with increasing ice temperatures and relaxing effective ice viscosities. We define "thermal-viscous collapse" as a transition from the polythermal ice sheet temperature distribution characteristic of the Holocene to temperate ice at the pressure melting point and associated lower viscosities. The conceptual model of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016